Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 2847-2858, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299532

RESUMO

Synergistic control of the risks posed by emerging antimicrobials and antibiotic resistance genes (ARGs) is crucial for ensuring ecological safety. Although electrogenic respiration can enhance the biodegradation of several antimicrobials and reduce ARGs accumulation, the association mechanisms of antimicrobial biodegradation (trimethoprim, TMP) with the fate of the antimicrobial resistome remain unclear. Here, the biotransformation pathway of TMP, microbial associations, and functional gene profiles (e.g., degradation, antimicrobial resistance, and electron transfer) were analyzed. The results showed that the microbial electrogenic respiration significantly enhanced the biodegradation of TMP, especially with a cosubstrate sodium acetate supply. Electroactive bacteria enriched in the electrode biofilm positively correlated with potential TMP degraders dominated in the planktonic communities. These cross-niche microbial associations may contribute to the accelerated catabolism of TMP and extracellular electron transfer. Importantly, the evolution and dissemination of overall ARGs and mobile genetic elements (MGEs) were significantly weakened due to the enhanced cometabolic biodegradation of TMP. This study provides a promising strategy for the synergistic control of the water ecological risks of antimicrobials and their resistome, while also highlighting new insights into the association of antimicrobial biodegradation with the evolution of the resistome in an electrically integrated biological process.


Assuntos
Microbiota , Trimetoprima , Trimetoprima/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
2.
J Hazard Mater ; 460: 132471, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683347

RESUMO

Pyrazolones, widely used as analgesic and anti-inflammatory pharmaceuticals, have become a significant concern because of their persistence and widespread presence in engineered (e.g., wastewater treatment plants) and natural environments. Thus, the urgent task is to ensure the effective and cost-efficient removal of pyrazolones. Advanced oxidation processes are the most commonly used removal method. Furthermore, the biodegradation of pyrazolones has been exploited using microbial communities or pure strains; however, screening for efficient degrading bacteria and clarifying the biodegradation mechanisms required further research. In this critical review, we overview the environmental occurrence of pyrazolones, their potential ecological health risks, and their corresponding removal techniques (e.g., O3 oxidation, photocatalysis, and Fenton-like process). We also emphasize the prospects for the risk and contamination control of pyrazolones in various environments using physicochemical-biochemical coupling technology. Collectively, the environmental occurrence of pyrazolones poses significant public health concerns, necessitating heightened attention and the implementation of effective methods to minimize their environmental risks.


Assuntos
Microbiota , Pirazolonas , Biodegradação Ambiental , Contaminação de Medicamentos , Saúde Pública
3.
Environ Sci Technol ; 57(33): 12137-12152, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37578142

RESUMO

Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana/genética , Microplásticos , Plásticos , Transferência Genética Horizontal
4.
Environ Res ; 231(Pt 1): 116028, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150383

RESUMO

Landfill leachate concentrate (LLC) is a concentrated waste stream from landfill leachate treatment systems and has been recognized as a key challenge due to its high concentration of salts, heavy metals, organic matters, etc. Improper management of LLC (e.g. reinjection) would exacerbate the performance of upstream treatment processes and pose risks to the surrounding environments near landfill sites. Addressing the challenge and recovering resources from LLC have thus been attracting considerable attention. Although many LLC treatment technologies have been developed, a comprehensive discussion about the challenges still lacks. This review critically evaluates mainstream LLC treatment technologies, namely incineration, coagulation, advanced oxidation, evaporation and solidification/stabilization. We then introduce a geopolymer-based solidification (GS) process as a promising technology owning to its simple casting process and reusable final product and summarize engineering applications in China. Finally, we suggest investigating hybrid systems to minimize LLC production and achieve the on-site reuse of LLC. Collectively, this review provides useful information to guide the selection of LLC treatment technologies and suggests a sustainable alternative for large-scale application, while also highlighting the need of joint efforts in the industry to achieve efficient, ecofriendly and economical on-site management of landfill waste streams.


Assuntos
Metais Pesados , Eliminação de Resíduos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Incineração , Instalações de Eliminação de Resíduos , Tecnologia
5.
Environ Sci Technol ; 57(19): 7490-7502, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37053517

RESUMO

Sustainable nitrogen cycle is an essential biogeochemical process that ensures ecosystem safety and byproduct greenhouse gas nitrous oxide reduction. Antimicrobials are always co-occurring with anthropogenic reactive nitrogen sources. However, their impacts on the ecological safety of microbial nitrogen cycle remain poorly understood. Here, a denitrifying bacterial strain Paracoccus denitrificans PD1222 was exposed to a widespread broad-spectrum antimicrobial triclocarban (TCC) at environmental concentrations. The denitrification was hindered by TCC at 25 µg L-1 and was completely inhibited once the TCC concentration exceeded 50 µg L-1. Importantly, the accumulation of N2O at 25 µg L-1 of TCC was 813 times as much as the control group without TCC, which attributed to the significantly downregulated expression of nitrous oxide reductase and the genes related to electron transfer, iron, and sulfur metabolism under TCC stress. Interestingly, combining TCC-degrading denitrifying Ochrobactrum sp. TCC-2 with strain PD1222 promoted the denitrification process and mitigated N2O emission by 2 orders of magnitude. We further consolidated the importance of complementary detoxification by introducing a TCC-hydrolyzing amidase gene tccA from strain TCC-2 into strain PD1222, which successfully protected strain PD1222 against the TCC stress. This study highlights an important link between TCC detoxification and sustainable denitrification and suggests a necessity to assess the ecological risks of antimicrobials in the context of climate change and ecosystem safety.


Assuntos
Anti-Infecciosos , Óxido Nitroso , Desnitrificação , Ecossistema , Biotransformação , Nitrogênio
6.
J Matern Fetal Neonatal Med ; 36(1): 2193284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36977601

RESUMO

OBJECTIVE: This study aimed to evaluate the effects of the home quarantine on pregnancy outcomes of gestational diabetes mellitus (GDM) patients during the COVID-19 outbreak. METHODS: The complete electronic medical records of patients with GDM with home quarantine history were collected and classified into the home quarantine group from 24 February 2020 to 24 November 2020. The same period of patients with GDM without home quarantine history were included in the control group from 2018 to 2019. The pregnant outcomes of the home quarantine and control groups were systematically compared, such as neonatal weight, head circumference, body length, one-minute Apgar score, fetal macrosomia, and pre-term delivery. RESULTS: A total of 1358 patients with GDM were included in the analysis, including 484 in 2018, 468 in 2019, and 406 in 2020. Patients with GDM with home quarantine in 2020 had higher glycemic levels and adverse pregnancy outcomes than in 2018 and 2019, including higher cesarean section rates, lower Apgar scores, and higher incidence of macrosomia and umbilical cord around the neck. More importantly, the second trimester of home quarantine had brought a broader impact on pregnant women and fetuses. CONCLUSION: Home quarantine has aggravated the condition of GDM pregnant women and brought more adverse pregnancy outcomes during the COVID-19 outbreak. Therefore, we suggested governments and hospitals strengthen lifestyle guidance, glucose management, and antenatal care for patients with GDM with home quarantine during public health emergencies.


Assuntos
COVID-19 , Diabetes Gestacional , Recém-Nascido , Gravidez , Humanos , Feminino , Diabetes Gestacional/epidemiologia , Resultado da Gravidez/epidemiologia , Cesárea , Estudos Retrospectivos , Quarentena , COVID-19/epidemiologia , COVID-19/prevenção & controle , Macrossomia Fetal/epidemiologia
7.
J Hazard Mater ; 441: 129926, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36099740

RESUMO

The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.


Assuntos
Poluentes Ambientais , Rhodococcus , Acetanilidas , Biodegradação Ambiental , Corantes , Águas Residuárias
8.
Appl Environ Microbiol ; 89(1): e0154722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36519886

RESUMO

Antibiotic resistance mediated by bacterial enzyme inactivation plays a crucial role in the degradation of antibiotics in the environment. Chloramphenicol (CAP) resistance by enzymatic inactivation comprises nitro reduction, amide bond hydrolysis, and acetylation modification. However, the molecular mechanism of enzymatic oxidation of CAP remains unknown. Here, a novel oxidase gene, cmO, was identified and confirmed biochemically. The encoded CmO oxidase could catalyze the oxidation at the C-1' and C-3' positions of CAP and thiamphenicol (TAP) in Sphingobium sp. strain CAP-1. CmO is highly conserved in members of the family Sphingomonadaceae and shares the highest amino acid similarity of 41.05% with the biochemically identified glucose methanol choline (GMC) oxidoreductases. Molecular docking and site-directed mutagenesis analyses demonstrated that CAP was anchored inside the protein pocket of CmO with the hydrogen bonding of key residues glycine (G) 99, asparagine (N) 518, methionine (M) 474, and tyrosine (Y) 380. CAP sensitivity tests demonstrated that the acetyltransferase and CmO could enable a higher level of resistance to CAP than the amide bond-hydrolyzing esterase and nitroreductase. This study provides a better theoretical basis and a novel diagnostic gene for understanding and assessing the fate and resistance risk of CAP and TAP in the environment. IMPORTANCE Rising levels of antibiotic resistance are undermining ecological and human health as a result of the indiscriminate usage of antibiotics. Various resistance mechanisms have been characterized-for example, genes encoding proteins that degrade antibiotics-and yet, this requires further exploration. In this study, we report a novel gene encoding an oxidase involved in the inactivation of typical amphenicol antibiotics (chloramphenicol and thiamphenicol), and the molecular mechanism is elucidated. The findings provide novel data with which to understand the capabilities of bacteria to tackle antibiotic stress, as well as the complex function of enzymes in the contexts of antibiotic resistance development and antibiotic removal. The reported gene can be further employed as an indicator to monitor amphenicol's fate in the environment, thus benefiting risk assessment in this era of antibiotic resistance.


Assuntos
Antibacterianos , Cloranfenicol , Farmacorresistência Bacteriana , Oxirredutases , Sphingomonadaceae , Tianfenicol , Humanos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Simulação de Acoplamento Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Tianfenicol/metabolismo , Tianfenicol/farmacologia , Farmacorresistência Bacteriana/genética
9.
Diabetes Metab Syndr Obes ; 15: 2405-2415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971524

RESUMO

Object: COVID-19 pandemic and worldwide quarantine seriously affected the physical and mental health of the general public. Our study aimed to investigate the effects of the COVID-19 quarantine on pregnancy outcomes among pregnant women with hypertensive disorders of pregnancy (HDP). Methods: This single-center retrospective cohort study collected complete clinical data of HDP patients with a history of home quarantine in The First Affiliated Hospital of Chongqing Medical University (Chongqing, China) in 2020 as well as the patients without home quarantine in 2018 and 2019. Then, the maternal and neonatal outcomes of two subtypes of HDP, gestational hypertension (GH) and preeclampsia/eclampsia (PE/E), were analyzed over the three years. Results: The incidence of HDP increased from 0.84% in 2018 and 0.51% in 2019 to 2.30% in 2020. The data suggested that home quarantine was associated with higher gestational weight gain, obesity rates, blood pressure, and uric acid among the patients with HDP in 2020. Furthermore, HDP patients with a history of home quarantine may have worse neonatal outcomes, including lower newborn weight, shorter body length, lower Apgar score, and higher risk of fetal growth restriction. Conclusion: Our results suggested that COVID-19 quarantine may be a risk factor for poor pregnancy outcomes in HDP patients. Lifestyle guidance and antenatal care may be necessary for HDP patients with home quarantine in an epidemic outbreak.

10.
J Hazard Mater ; 440: 129796, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007371

RESUMO

Triclocarban (TCC), one of the typical antimicrobial agents, is a contaminant of emerging concern commonly found in high concentration in water environments. However, the fate and toxicity of TCC in wastewater treatment systems remain poorly understood. Here, we investigated how TCC impacts chemical oxygen demand and inorganic nitrogen transformation in a hydrolytic anaerobic-anoxic/oxic process. In the anaerobic section, the transformation of TCC was dominated by reductive dechlorination and supplemented by two amid bonds hydrolysis. In the anoxic and oxic sections, the hydrolysis of amid bonds dominated. The toxicity was reduced after the treatment (IC50 from 0.09 to 0.54). TCC inhibited NH4+-N removal in the anaerobic section and led to the NO3--N accumulation (2.84-4.13 mg/L) after treatment, with the abundance of N-removal bacteria decreased by 6%. Furthermore, the original ecological niche was gradually replaced by TCC-resistant/degradative bacteria, formating new microbial modules to resist the TCC stress. Importantly, fourteen genera including Methanosaeta, Longilinea, Dokdonella and Mycobacterium as potential bioindicators warning TCC and its intermediates were proposed. Overall, this study provides new insights into the fate of TCC in biological wastewater treatment systems and suggests a great importance for TCC control to ensure the health and resilience of ecosystems.


Assuntos
Anti-Infecciosos , Carbanilidas , Microbiota , Poluentes Químicos da Água , Purificação da Água , Carbanilidas/análise , Biomarcadores Ambientais , Nitrogênio , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
Environ Res ; 204(Pt D): 112373, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774508

RESUMO

Nanoparticles (NPs) and antibiotic resistance elements are ubiquitous in wastewater and consequently, in receiving environments. Sub-lethal levels of engineered NPs potentially result in a selective pressure on antibiotic resistance gene (ARG) propagation in wastewater treatment plants. Conversely, emergent NPs are being designed to naturally attenuate ARGs based on special physical and electrochemical properties, which could alleviate dissemination of ARGs to the environment. The complex interactions between NPs and antibiotic resistance elements have heightened interest in elucidating the potential positive and negative implications. This review focuses on the properties of NPs and ARGs and how their interactions could increase or decrease antibiotic resistance at wastewater treatment plants and in receiving environments. Further, the potential for sub-lethal level NPs to facilitate horizontal gene transfer of ARGs and increase mutagenesis rates, which adds a layer of complexity to combatting antibiotic resistance associated with wastewater management, is discussed. Notably, the literature revealed that sub-lethal exposure of engineered NPs may facilitate conjugative transfer of ARGs by increasing cell membrane permeability. The enhanced permeability is a result of direct damage via NP attachment and indirect damage by generating reactive oxygen species (ROS) and causing genetic changes relevant to conjugation. Finally, current knowledge gaps and future research directions (e.g., deciphering the fate of NPs in the environment and examining the long-term cytotoxicity of NPs) are identified for this emerging field.


Assuntos
Nanopartículas , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...